Table of Contents
Chapter Goals
Integrated Services Digital Network
Chapter Goals
- Explain what ISDN is.
- Describe ISDN devices and how they operate.
- Describe the specifications for ISDN data transmittal for the three layers at which ISDN transmits.
Integrated Services Digital Network
Introduction
Integrated Services Digital Network (ISDN) is comprised of digital telephony and data-transport services offered by regional telephone carriers. ISDN involves the digitization of the telephone network, which permits voice, data, text, graphics, music, video, and other source material to be transmitted over existing telephone wires. The emergence of ISDN represents an effort to standardize subscriber services, user/network interfaces, and network and internetwork capabilities. ISDN applications include high-speed image applications (such as Group IV facsimile), additional telephone lines in homes to serve the telecommuting industry, high-speed file transfer, and videoconferencing. Voice service is also an application for ISDN. This chapter summarizes the underlying technologies and services associated with ISDN.
ISDN Devices
ISDN devices include terminals, terminal adapters (TAs), network-termination devices, line-termination equipment, and exchange-termination equipment. ISDN terminals come in two types. Specialized ISDN terminals are referred to as terminal equipment type 1 (TE1). Non-ISDN terminals, such as DTE, that predate the ISDN standards are referred to as terminal equipment type 2 (TE2). TE1s connect to the ISDN network through a four-wire, twisted-pair digital link. TE2s connect to the ISDN network through a TA. The ISDN TA can be either a standalone device or a board inside the TE2. If the TE2 is implemented as a standalone device, it connects to the TA via a standard physical-layer interface. Examples include EIA/TIA-232-C (formerly RS-232-C), V.24, and V.35.
Beyond the TE1 and TE2 devices, the next connection point in the ISDN network is the network termination type 1 (NT1) or network termination type 2 (NT2) device. These
are network-termination devices that connect the four-wire subscriber wiring to the conventional two-wire local loop. In North America, the NT1 is a customer premises equipment (CPE) device. In most other parts of the world, the NT1 is part of the network provided by the carrier. The NT2 is a more complicated device that typically is found in digital private branch exchanges (PBXs) and that performs Layer 2 and 3 protocol functions and concentration services. An NT1/2 device also exists as a single device that combines the functions of an NT1 and an NT2.
ISDN specifies a number of reference points that define logical interfaces between functional groups, such as TAs and NT1s. ISDN reference points include the following:
- R—The reference point between non-ISDN equipment and a TA.
- S—The reference point between user terminals and the NT2.
- T—The reference point between NT1 and NT2 devices.
- U—The reference point between NT1 devices and line-termination equipment in the carrier network. The U reference point is relevant only in North America, where the NT1 function is not provided by the carrier network.
Figure 12-1: Sample ISDN Configuration Illustrates Relationships Between Devices and Reference Points

Services
There are two types of services associated with ISDN:
- BRI
- PRI
ISDN BRI Service
ISDN PRI Service
ISDN Primary Rate Interface (PRI) service offers 23 B channels and 1 D channel in North America and Japan, yielding a total bit rate of 1.544 Mbps (the PRI D channel runs at 64 kbps). ISDN PRI in Europe, Australia, and other parts of the world provides 30 B channels plus one 64-kbps D channel and a total interface rate of 2.048 Mbps. The PRI physical layer specification is ITU-T I.431.
ISDN Specifications
This section describes the various ISDN specifications for Layer 1, Layer 2, and Layer 3.
Layer 1
ISDN physical layer (Layer 1) frame formats differ depending on whether the frame is outbound (from terminal to network) or inbound (from network to terminal). Both physical layer interfaces are shown in Figure 12-2.
- F—Provides synchronization
- L—Adjusts the average bit value
- E—Ensures contention resolution when several terminals on a passive bus contend for a channel
- A—Activates devices
- S—Is unassigned
- B1, B2, and D—Handle user data
Figure 12-2: ISDN Physical Layer Frame Formats Differ Depending on Their Direction

Terminals cannot transmit into the D channel unless they first detect a specific number of ones (indicating "no signal") corresponding to a pre-established priority. If the TE detects a bit in the echo (E) channel that is different from its D bits, it must stop transmitting immediately. This simple technique ensures that only one terminal can transmit its D message at one time. After successful D-message transmission, the terminal has its priority reduced by requiring it to detect more continuous ones before transmitting. Terminals cannot raise their priority until all other devices on the same line have had an opportunity to send a D message. Telephone connections have higher priority than all other services, and signaling information has a higher priority than nonsignaling information.
Layer 2
Layer 2 of the ISDN signaling protocol is Link Access Procedure, D channel (LAPD). LAPD is similar to High-Level Data Link Control (HDLC) and Link Access Procedure, Balanced (LAPB) (see Chapter 16, "Synchronous Data Link Control and Derivatives," and Chapter 17, "X.25," for more information on these protocols). As the expansion of the LAPD acronym indicates, this layer is used across the D channel to ensure that control and signaling information flows and is received properly. The LAPD frame format (see Figure 12-3) is very similar to that of HDLC; like HDLC, LAPD uses supervisory, information, and unnumbered frames. The LAPD protocol is formally specified in ITU-T Q.920 and ITU-T Q.921.
Figure 12-3: LAPD Frame Format Is Similar to That of HDLC and LAPB

Layer 3
Figure 12-4: An ISDN Circuit-Switched Call Moves Through Various Stages to Its Destination

Summary
ISDN is comprised of digital telephony and data-transport services offered by regional telephone carriers. ISDN involves the digitization of the telephone network to transmit voice, data, text, graphics, music, video, and other source material over existing telephone wires.
ISDN devices include the following:
- Terminals
- Terminal adapters (TAs)
- Network-termination devices
- Line-termination equipment
- Exchange-termination equipment
ISDN uses the following two types of services:
- Basic Rate Interface (BRI, which offers two B channels and one D channel (2B+D)
- Primary Rate Interface (PRI), which offers 23 B channels and 1 D channel in North America and Japan, and 30 B channels and 1 D channel in Europe and Australia
Review Questions
Q—Which reference point for ISDN logical devices is relevant only in North America?
A—U, the reference point between NT1 devices and line-termination equipment in the carrier network.
Q—What are the two speeds of ISDN PRI services?
A—In North America and Japan, 23 B channels (1.472 Mbps) plus 1 D channel (64 kbps); in Europe and Australia, 31 B channels (1.984 Mbps) plus 1 D channel (64 kbps).
Q—Of the 48 bits in the ISDN physical layer frame formats, how many bits represent data?
A—36.
No comments:
Post a Comment