Table of Contents
Chapter Goals
NetWare Link-Services Protocol
- Background
NLSP Hierarchical Routing
NLSP Operation
NLSP Hierarchical Addressing
NLSP Hello Packets
Review Questions
Chapter Goals
- Describe the Network Link-Service Protocol.
- Describe routing with NLSP.
- Describe the data packet used by NLSP.
NetWare Link-Services Protocol
Background
In terms of scalability, NLSP can support up to 127 hops (RIP supports only 15 hops) and permits hierarchical addressing of network nodes, which allows networks to contain thousands of LANs and servers.
NLSP Hierarchical Routing
NLSP supports hierarchical routing with area, domain, and global internetwork components. An area is a collection of connected networks that all have the same area address. A domain is a collection of areas that belong to the same organization. A global internetwork is a collection of domains that usually belong to different organizations, but with an arms-length relationship. Areas can be linked to create routing domains, and domains can be linked to create a global internetwork.
NLSP supports three levels of hierarchical routing: Level 1, Level 2, and Level 3 routing. A Level 1 router connects network segments within a given routing area. A Level 2 router connects areas and also acts as a Level 1 router within its own area. A Level 3 router connects domains and also acts as a Level 2 router within its own domain. Figure 44-1 illustrates the three routing levels NLSP defines.
Figure 44-1: NLSP Defines Three Routing Levels
Hierarchical Routing Efficiencies
Hierarchical routing simplifies the process of enlarging a network by reducing the amount of information that every router must store and process to route packets within a domain. A Level 1 router is required to keep detailed information only about its own area instead of storing link-state information for every router and network segment in its domain. To exchange traffic with other areas, a Level 1 router must find only the nearest Level 2 router. Between areas, Level 2 routers advertise the area address(es) only for their respective areas, not their entire link-state databases. Level 3 routers perform similarly between domains.
NLSP Adjacencies
By exchanging hello packets, a router determines the reachability of its neighbors and uses this information to establish adjacency. Adjacency is a record that a router keeps about the state of its connectivity with a neighbor and the attributes of the neighboring router. The router stores these records in its adjacency database.
Adjacency-establishment procedures vary depending upon whether the router is establishing and maintaining adjacencies over a WAN or a LAN.
Establishing router adjacency over a WAN involves first establishing the underlying data-link connection (details depend upon the medium). The routers then exchange identities by using the IPX WAN Version 2 protocol and determine certain operational characteristics of the link. Hello packets are exchanged, and the routers update their adjacency databases. The routers then exchange both link-state packets (LSPs) describing the state of their links and IPX data packets over the link. To maintain a WAN link, the router maintains a state variable indicating whether the link is up, down, or initializing for each adjacency. If the router does not hear from a neighbor within the time specified in a holding timer, the router generates a message indicating that the link is down and deletes the adjacency.
WAN hello packets enable routers to discover each other's identity, to decide whether
they are in the same routing area, and to determine whether other routers and links are operational. A router sends hello packets when the circuit is first established, when a timer expires, or when the contents of the next hello to be transmitted are different than the contents of the previous hello transmitted by this system (and one or more seconds have elapsed since the previous hello). Hello packets are sent as long as the circuit exists.
Establishing a New WAN Adjacency
A typical startup procedure between two routers (A and B) on a WAN link begins with the link in the down state. Router A sends a WAN hello indicating the down state to Router B, which changes its state for the link to initializing. Router B sends a WAN hello with a field indicating its initializing state to Router A. Router A then changes its state for the link to initializing and sends a WAN hello with a field indicating this to Router B. Router B changes its state for the link to the up state and sends a WAN hello with a field indicating its new state. Finally, Router A changes its state for the link to up.
Maintaining Adjacencies over LANs
Sending LAN Hello Packets
NLSP Operation
An NLSP router extracts certain information from the adjacency database and adds locally derived information. Using this information, the router constructs a link-state packet (LSP) that describes its immediate neighbors. All LSPs constructed by all routers in the routing area make up the link-state database for the area.
Flooding is instigated when a router detects a topology change. When such a change is detected, the router constructs a new LSP and transmits it to each of its neighbors. Such LSPs are directed packets on a WAN and multicast packets on a LAN. Upon receiving an LSP, the router uses the sequence number in the packet to decide whether the packet is newer than the current copy stored in its database. If it is a newer LSP, the router retransmits it to all its neighbors (except on the circuit over which the LSP was received).
The receipt-confirmation process is different for LANs and WANs. On WANs, a router receiving an LSP replies with an acknowledgment. On LANs, no explicit acknowledgment occurs, but the designated router periodically multicasts a packet called a complete sequence number packet (CSNP) that contains all the LSP identifiers and sequence numbers that it has in its database for the entire area. This ensures that other routers can detect whether they are out of synchronization with the designated router.
NLSP Hierarchical Addressing
- 01234500—This number is the network address for this routing area. Every network number within that area starts with the identification code 012345.
- FFFFFF00—This number is the mask that identifies how much of the network address refers to the area itself and how much refers to individual networks within the area.
Figure 44-2: NLSP Addresses Consist of a Network Address and a Mask
A routing area can have as many as three different area addresses, each with a different mask. Having more than one area address allows the routing area to be reorganized without interrupting operations. Any combination of area addresses can be used within a domain.
NLSP Hello Packets
Two types of NLSP hello packets exist: WAN hello and Level 1 LAN hello packets.
WAN Hello Packet
Figure 44-3 illustrates the fields of a WAN hello packet.
Figure 44-3: Fourteen Fields Make Up a WAN Hello Packet
WAN Hello Packet Fields
The following WAN hello packet field descriptions summarize each field illustrated in Figure 44-3.
- Protocol ID—Identifies the NLSP routing layer with the 0x83 hex number.
- Length indicator—Determines the number of bytes in the fixed portion of the header.
- Minor version—Contains one possible decimal value and is ignored on receipt.
- Reserved—Contains no decimal values and is ignored on receipt.
- Packet type (5 bits)—Contains 17 possible decimal values.
- Major version—Contains one possible decimal value.
- Reserved—Contains no decimal values and is ignored on receipt.
- State (2 bits)—Sends the router's state associated with the link (0 = up, 1 = initializing, 2 = down).
- Circuit type (Cct type)—Consists of 2 bits. This field can have one of the following values:
- 0—Reserved value; ignore entire packet.
- 1—Level 1 routing only.
- 2—Level 2 routing only. (The sender uses this link for Level 2 routing.)
- 3—Both Level 1 and Level 2. (The sender is a Level 2 router and uses this link for Level 1 and Level 2 traffic.)
- 0—Reserved value; ignore entire packet.
- Source ID—Serves as the system identifier of the sending router.
- Holding time—Contains the holding timer, in seconds, to be used for the sending router.
- Packet length—Determines the entire length of the packet, in bytes, including the NLSP header.
- Local WAN circuit ID—Acts as a unique identifier assigned to this circuit when it is created by the router.
- Variable length field—Consists of a series of optional fields.
NLSP LAN Hello Packets
Figure 44-4 illustrates the fields of a LAN Level 1 hello packet.
Figure 44-4: A LAN Level 1 Hello Packet Consists of 16 Fields
Level 1 LAN Hello Packet Fields
The following Level 1 LAN Hello packet field descriptions summarize each field illustrated in Figure 44-4:
- Protocol ID—Identifies the NLSP routing layer with the 0x83 hex number.
- Length indicator—Determines the number of bytes in the fixed portion of the header (up to and including the LAN ID field).
- Minor version—Contains one possible decimal value and is ignored on receipt.
- Reserved—Contains no possible decimal values and is ignored on receipt.
- Packet type (5 bits)—Contains 15 possible decimal values.
- Major version—Contains one possible decimal value.
- Reserved—Contains no possible decimal values and is ignored on receipt.
- No multicast (NM) (1 bit)—Indicates, when set to 1, that the packet sender cannot receive traffic addressed to a multicast address. (Future packets on this LAN must be sent to the broadcast address.)
- Circuit type (Cct Type) (2 bits)—Can have one of the following values:
- 0—Reserved value; ignore entire packet.
- 1—Level 1 routing only.
- 2—Level 2 routing only. (The sender uses this link for Level 2 routing.)
- 3—Both Level 1 and Level 2. (The sender is a Level 2 router and uses this link for Level 1 and Level 2 traffic.)
- 0—Reserved value; ignore entire packet.
- Source ID—Contains the system ID of the sending router.
- Holding time—Contains the holding timer, in seconds, to be used for the sending router.
- Packet length—Determines the entire length of the packet, in bytes, including the NLSP header.
- R—Contains no possible decimal values and is ignored on receipt.
- Priority (7 bits)—Serves as the priority associated with being the LAN Level 1 designated router. (Higher numbers have higher priority.)
- LAN ID—Contains the system ID (6 bytes) of the LAN Level 1 designated router, followed by a field assigned by that designated router.
- Variable length fields—Consists of a series of optional fields.
Review Questions
Q—What is the purpose of a Layer 2 router within the NLSP hierarchical routing scheme?
A—The Layer 2 router connects network segments within a given routing area. A Level 2 router connects areas and also acts as a Level 1 router within its own area.
Q—How long are hello packets sent after a router is initialized and reaches a fully functional state?
A—Hello packets are continuously sent out an active interface. This allows the adjacent router to know that the interface or connection is still active and usable. If a router does not receive a hello packet from a neighbor after a set period of time, it assumes that the interface or connection is no longer available and deletes it from its database.
Q—What type of LSPs are sent over a WAN—directed or multicast?
A—When LSPs are sent via a WAN link, they are sent as directed packets, meaning that they contain the IP address of the neighbor. On a LAN, a multicast packet is sent.
No comments:
Post a Comment